
Automatic Grading of Programming Assignments:
An Approach Based on Formal Semantics

Xiao Liu, Shuai Wang, Pei Wang, and Dinghao Wu
College of Information Sciences and Technology

The Pennsylvania State University, University Park
{xvl5190, swz175, pxw172, dwu}@ist.psu.edu

Abstract—Programming assignment grading can be time-
consuming and error-prone if done manually. Existing tools
generate feedback with failing test cases. However, this method
is inefficient and the results are incomplete. In this paper, we
present AUTOGRADER, a tool that automatically determines the
correctness of programming assignments and provides counterex-
amples given a single reference implementation of the problem.
Instead of counting the passed tests, our tool searches for seman-
tically different execution paths between a student’s submission
and the reference implementation. If such a difference is found,
the submission is deemed incorrect; otherwise, it is judged to be
a correct solution. We use weakest preconditions and symbolic
execution to capture the semantics of execution paths and detect
potential path differences. AUTOGRADER is the first automated
grading tool that relies on program semantics and generates
feedback with counterexamples based on path deviations. It
also reduces human efforts in writing test cases and makes the
grading more complete. We implement AUTOGRADER and test
its effectiveness and performance with real-world programming
problems and student submissions collected from an online
programming site. Our experiment reveals that there are no false
negatives using our proposed method and we detected 11 errors
of online platform judges.

Index Terms—automatic grader, programming assignments,
weakest precondition, equivalence checking

I. INTRODUCTION

Providing prompt feedback on programming problem sub-
missions encourages students to adaptively learn coding skills
and allows instructors to collect real-time information about
how their teaching goals are being met. In this context, manual
grading can be both time-consuming and error-prone, espe-
cially when instructors are teaching large-sized classes. With
the popularity of Massive Open Online Courses (MOOCs),
(e.g., the various programming courses on the edX plat-
form, which has more than 150,000 students enrolled world-
wide [1]), prompt grading of all students submissions has
become more challenging. Many online courses adopt peer
feedback [2], but this type of feedback is not as responsive
as desired. Students have to wait for hours to receive the
feedback and instructors have only limited knowledge of these
unstructured peer evaluation processes.

Automated grading and feedback generation have been
actively researched in the past decade. A survey by Ihantola et
al. [3] reviewed various tools for the automatic assessment of
programming exercises. Existing tools generate feedback with
failed test cases where test inputs can be either automatically

generated [4], [5] or selected from a collection of representa-
tive test suites provided by instructors [6]–[9]. However, there
are two critical issues affecting test-based grading. First, it
can be costly to construct high-quality test cases. In fact,
providing a complete test suite for a programming problem
may not be practically feasible because of limited resources.
After scanning the online judging platform forums [10]–[12],
we noticed numerous user complaints about a lack of test cases
for certain programs, which can lead to incorrect judging.
This potentially allows students to overuse the grading system
with incomplete test suites by collecting failed test cases with
many submission attempts. Another problem with test-driven
grading is that some tools generate feedback using formal
methods [13]–[15] if instructors have reference solutions to a
programming problem. An error model is utilized to provide
more in-depth and comprehensive feedback. However, it is
arguable that writing a complete set of reference specifications
is less expensive than constructing test cases, especially when
the problem can be solved in numerous ways. Error models
also require additional effort to devise. Most importantly, to
the best of our knowledge, the overall accuracy of these tools
is quite limited, hindering their deployment in the real world.

In this paper, we propose AUTOGRADER, a tool that au-
tomatically provides real-time judgments with counterexam-
ples for programming exercises in introductory programming
courses. The solution is based on program analysis, and more
specifically, the technique of differential semantic analysis.
With a single correct implementation as the reference solution,
AUTOGRADER can “search” for the differences between the
execution traces of a student’s submission and the reference
solution. If one or more dissimilarities are found, the sub-
mission is decided as incorrect; otherwise, the submission is
decided as correct. We have designed our method to find the
inputs that will cause two programs to behave differently, by
having either different output states or semantically different
execution paths. Although it is simple to compare output
states, proving the equivalence of execution paths is quite
challenging. To tackle this problem, we leverage the idea
of path deviation [16], [17] with improvements tailored to
the autograding problem. To be more precise, we compare
two execution paths by looking at their input spaces. The
execution path should have one-to-one trace correspondence
for satisfiable inputs. If a point in the symmetric difference
of the two input spaces that can lead to other semantically

1

different paths is found, the compared programs are proven
inequivalent, thus making the submission incorrect.

We implement AUTOGRADER with symbolic execution
and weakest precondition. We also develop an Equivalence
Checker to distinguish true semantic deviations from “syntac-
tic” deviations. Our method is the first to apply program traces
for the automated grading of programming problems with a
single correct reference implementation. In this regards, our
solution has a number of advantages. First, compared with
purely test-based methods, our method significantly alleviates
the workload of instructors, saving them from constructing test
cases. Second, our method is based on rigorous program se-
mantics, verification conditions (weakest precondition), sym-
bolic execution, and constraint solving. Our method is also
sound regardless of the limitations of symbolic execution and
constraint solving. In practice, we achieved no false negatives
in autograding this study’s programming assignments; and,
our tool identified 11 false negative errors when using a real-
world test-based grading method. In this way, we reveal the
weakness of incomplete test suites that are often used in the
online grading of programming assignments.

II. OVERVIEW
A. Problem Statement

The goal of our work is to automatically decide the cor-
rectness of student programming assignments according to
a reference implementation. To be more specific, given a
reference implementation R and a student submission S, our
goal is to decide whether S behaves the same as R. That is, we
seek to provide a yes or no answer to the following question:
Are S and R semantically equivalent?

Suppose a programming assignment requires students to
write a max3 function that returns the max value of three
integer inputs. The instructor provides a reference imple-
mentation (Fig. 1a), and we receive five student submissions
(Fig. 1b–1f), where Submission 1 and Submission 2 are correct
implementations and the rest are incorrect ones. While the
correct submissions are semantically equivalent to the refer-
ence implementation, the incorrect programs neglect boundary
conditions. Given the input a = 5, b = 5, c = 3, Submission
3 and Submission 4 will return 3. Given the input a = 5, b =
3, c = 3, Submission 5 will return 3. Both of these outcomes
are incorrect. We expect AUTOGRADER, which relies on the
correct reference implementation, to automatically decide that
Submission 1 and Submission 2 are correct and that the other
three are incorrect.

B. Basic Idea

In general, a program can be characterized with respect to
three aspects: program inputs, program outputs, and program
execution paths. Our idea is to efficiently search for semantic
differences between a student’s submission and the reference
implementation by detecting Path Deviation [16]–[18]. To be
more specific, two programs, a reference R and a submission
S, should follow a certain path given the same input i1. When
given a different input i2, the two programs should either

both follow the original path or both execute a new path
(a semantically different one). Otherwise, we can say that
there is a deviation; that is, with the new input, one program
follows the original path while the other program follows a
semantically different path. Hence, our goal becomes finding
such an input that causes the new execution to deviate from
the original path, thereby revealing the incorrectness of the
submission program.

To find such an input, our methodology relies on a form of
differential program analysis that performs symbolic execution
to precisely characterize program behaviors by collecting the
path conditions and computing the weakest preconditions.
We use the accumulated path conditions, denoted by F , to
represent the trace. Therefore, we have two formulas, Fr for
the trace in the reference implementation and Fs for the trace
in the student submission.

At a high level, it is easy to find an input i such that
R(i) ≡ S(i), where R(i) and S(i) are the output states or
values, assuming students only make mistakes in corner cases
but process the inputs with correct logic in most cases. Assume
we run the reference program R and the student submission
program S with the input i, and doing so yields two traces, Tr

and Ts. We then build two formulas, Fr and Fs, representing
the two traces’ semantics (with the path condition and weakest
precondition). That is, if Fr(i) holds for input i, the program
execution will follow trace Tr. The submission trace functions
similarly.

Then the key step is to find another input x that causes one
of the two traces to deviate semantically while the other stays
on the original trace. That is, either Fr(x) or Fs(x) holds, but
not both. Therefore, we have

∃x.(Fs(x) ∧ ¬Fr(x)) ∨ (¬Fs(x) ∧ Fr(x)). (1)

This formula reveals the semantic difference between the
two traces. The recorded symbolic formulas are fed to
a constraint solver, and we check the satisfiability of
(Fs ∧ ¬Fr) ∨ (¬Fs ∧ Fr) to reveal path deviations. The satis-
fiability of such a formula signifies the existence of inputs
that causes the corresponding execution traces to deviate.
That is, satisfiable solutions represent program inputs that can
cause the execution traces between the reference and student
submission to deviate, thus revealing an incorrect submission.
Furthermore, each satisfiable solution serves as a concrete
example to trigger the deviation and can hence be directly
used for debugging purposes. In another case, if there is no
satisfiable solution for the formula, we try another trace until
all the paths in the program are covered.

However, the “syntactic” path deviation does not necessarily
lead to a true semantic deviation due to “trace splitting”. Trace
splitting can typically lead to false positives at this stage.
To make sure the new input x triggers a real deviation, we
undertake an equivalence checking of the deviating path and
the original path (see details in §III-E). More specifically, we
check whether there are equivalent paths for the new execution

2

1 int max3(int a, int b, int c) {
2 if (a>=b && a>=c)
3 return a;
4 else if (b>=a && b>=c)
5 return b;
6 else
7 return c;
8 }

(a) Reference

1 int max3(int a, int b, int c) {
2 if (a>=b)
3 if (a>=c)
4 return a;
5 else
6 return c;
7 else
8 if (b>=c)
9 return b;

10 else
11 return c;
12 }

(b) Submission 1 (Correct)

1 int max3(int a, int b, int c) {
2 if (a>b)
3 if (a>c)
4 return a;
5 else
6 return c;
7 else
8 if (b>c)
9 return b;

10 else
11 return c;
12 }

(c) Submission 2 (Correct)

1 int max3(int a, int b, int c) {
2 if (a>b && a>c)
3 return a;
4 else if (b>a && b>c)
5 return b;
6 else
7 return c;
8 }

(d) Submission 3 (Incorrect)

1 int max3(int a, int b, int c) {
2 if (a>b && b<c)
3 return a;
4 else if (b>a && a>c)
5 return b;
6 else
7 return c;
8 }

(e) Submission 4 (Incorrect)

1 int max3(int a, int b, int c) {
2 if (a>b && b>c)
3 return a;
4 else if (b>c)
5 return b;
6 else
7 return c;
8 }

(f) Submission 5 (Incorrect)

Fig. 1. Reference implementation and student submissions

path with the same inputs in the reference implementation by
solving the formula

(Or 6= Od) ∧ (Fd ∧ Fr), (2)

where O is the output value and the subscripts r and d repre-
sent the reference trace and the deviation trace, respectively.
Basically, we try to answer the question: Can we find an input
at the intersection of the input spaces of the two traces that
leads to different output values? If the constraint solver reports
“unsatisfiable”, this means that the detected deviating path is
a condition that can be merged into an existing path. Our tool
reports a false deviation for Submission 2 by solving the first
formula. However, if the constraint solver reports “satisfiable”
for the second formula, the case of unmerged paths is canceled
and we report a true deviation.

We note that our method is very efficient in terms of finding
deviations. If there is a semantic path deviation associated
with the original execution traces, our method is able to find
the deviation in one step, with the help of symbolic execution,
weakest precondition, and constraint solving.

C. A Running Example

Fig. 1a presents a sample reference implementation. Two
conditional statements exist in this program, leading to three
execution paths. If a conditional statement holds, the execution
path will be chosen directly and corresponding instructions
will be executed. For instance, in the reference implemen-
tation, if the first conditional statement on line 2 holds, the
formula for this execution path will contain (a >= b ∧ a >=
c) and the corresponding output will be a. Similarly, the
accumulated path condition will contain ¬(a >= b ∧ a >= c)
if the conditional statement does not hold.

Fig. 2 shows the workflow of AUTOGRADER. We present
how AUTOGRADER works using a running example as shown
in Fig. 1. To grade a programming submission, we first gener-
ate a non-trivial program input using a white-box fuzzer [19].

With the generated input, in this case a = 5, b = 3, c = 2, we
record the program execution traces for the five programs.
We then construct a constraint given the formulas of the
two execution traces, describing potential path deviations. The
constructed constraint is fed to a constraint solver to check
whether a path deviation truly exists. Details of each step are
given in §III.

In the running example, we can quickly decide that Sub-
mission 4 is not correct because of the incorrect output. While
the correct output from the reference implementation is 5,
Submission 4 returns the value 3. For other submissions, we
compute the following formulas for each trace:

Fr = ((a ≥ b) ∧ (a ≥ c))

Fs1 = ((a ≥ b) ∧ (a ≥ c)) Fs2 = ((a > b) ∧ (a > c))

Fs3 = ((a > b) ∧ (a > c)) Fs5 = ((a > b ∧ b > c))

To detect any deviations, we must fundamentally solve the
formula (Fs ∧ ¬Fr) ∨ (¬Fr ∧ Fs) for each of the submis-
sions. Table I shows the results of the satisfiability check
for this example. It is easy to see that in Submission 1, Fr

and Fs1 are the same. Our tool confirms this by reporting
“unsatisfiable” for constraint (Fs1 ∧ ¬Fr) ∨ (¬Fr ∧ Fs1). For
the rest of the submissions, the constraint solver finds inputs
that cause the execution paths in the reference implementation
and submissions to deviate. These deviations are documented
in Table I.

While the newly generated input will trigger the same
path in the reference as the original input (line 2), we
may notice that they also trigger deviations in Submission
2 (line 8), Submission 3 (line 6) and Submission 5
(line 4). These deviations can be caused by syntactic “trace
splitting”. For example, although we can detect inputs (i.e.,
a = 5, b = 5, c = 3) for Submission 2 that cause the program
trace to deviate, this is a false positive that we can neglect. This
is because the detected input triggers the boundary condition
a = b on this continuous function. Both cases are correct if

3

Reference

Executable

Submission

Executable

Input Generator Input x Same
Output?

Path
Deviation?Y

Incorrect

Path
Equivalent?Y Next

Iteration? Correct

Y

NY

N N

N

Fig. 2. The workflow of AUTOGRADER

we syntactically merge the boundary into the path a > b or
the path a < b. To confirm that there is a real path deviation,
we perform equivalence checking of the deviating path and
the original path on this trace. We solve Formula (2), and
the satisfiable solutions show that there are inputs that hold
both path constraints (Fd and Fr) and can lead to different
outputs for the two paths. In other words, we confirm that
the deviating path can truly lead to incorrect program outputs.
Otherwise, if the constraint solver reports “unsatisfiable” for
this constraint, we conclude that no input can lead to different
program outputs along these two traces. For the cases in the
example, we can confirm the deviations in Submission 3 and
Submission 5, but the deviation in Submission 2 is ruled out.

If there is no path deviation reported for the two traces with
a same input on the reference implementation and submission,
our tool will ask the white-box fuzzer to generate another input
on a new path until all paths in the reference implementation
are covered or a time limit is reached. If there is no input that
can lead to a path deviation or different program outputs, then
it is safe to report the submission as correct. In the motivating
example, our tool shows that Submission 1 and Submission 2
are correct as expected.

III. DESIGN

In this section, we present the design of AUTOGRADER.
The workflow of AUTOGRADER is shown in Fig. 2. Given the
reference implementation and one submission, we first compile
these two programs into executable files. We then ask a white-
box fuzzer to generate one program input and log the program
execution trace by running the program executables with such
an input (§III-A). The next step is to compare the execution
outputs; different execution outputs indicate the incorrectness
of the submission. If the outputs are identical, however, we
undertake further analysis to identify potential path deviations
along the trace (§III-C and §III-D). As previously discussed,
path deviations may not lead to real semantic differences,
and we further rule out false positives by checking path
equivalence between the two traces (§III-E). Once a true
positive (i.e., semantically different execution paths under the
same input) is confirmed, we halt the analysis, grade the
submission as incorrect, and output the counterexample. If
no difference can be detected with the given input, we re-
run the white-box fuzzer to yield new inputs and analyze
further traces. A submission is concluded as correct once all
the paths have been covered and no true positive deviations

can be detected. We elaborate on each of these steps in the
following sections.

A. Input Generation

White-box fuzzing ([20], [21]) is a commonly used tech-
nique to improve path coverage in software testing. Leveraging
symbolic execution with constraint solving, white-box fuzzing
efficiently generates test cases that can cover most of the
program. In this research, we use the same technique to
generate program inputs.

B. Trace Logging

Once an input is generated, we execute the program with
that input and record the execution trace. We employ a
dynamic program instrumentation tool to log the execution
trace of the program.

A program execution trace contains a sequence of assembly
instructions. In order to perform the symbolic execution,
we first lift the low-level assembly representations into an
analysis-friendly format. However, our tentative tests show
that symbolic execution (see §III-C for details) can lead
to a high performance penalty if every instruction on the
trace is symbolically interpreted. Moreover, usually only a
subset of the instructions on the trace is indeed relevant to
program inputs. Thus, we perform taint analysis on the logged
execution trace: Instructions that are irrelevant according to
the data flow, given the program inputs, are ruled out in
this step. After that, only the tainted instructions are kept for
further analysis. Technical details regarding how we perform
this analysis are discussed in §IV.

C. Symbolic Execution

As mentioned, our research aims at detecting inputs that
can lead to path deviations. Recall that we seek to identify the
symmetric difference (the symmetric difference of two traces
defines the set of inputs that execute on either of the traces
but not both) within the path conditions of the two execution
traces over the same input space. The recognized differences
are expected to reveal path deviations and even potential
semantic divergences. Considering the input of this analysis
as one concrete execution trace, this step aims to recover rich
sets of information (e.g., input space over an execution path,
path conditions) that represent the abstract semantics of the
program. We solve the abstract semantics recovery problem
with symbolic execution [22], [23].

4

TABLE I
PATH DEVIATION

Output Formula (1) Deviation Deviation Example Formula (2) Equivalence Decision
1 Correct Unsat No - - - Next Iteration
2 Correct Sat Yes a = 5, b = 5, c = 3 Unsat Yes Next Iteration
3 Correct Sat Yes a = 5, b = 5, c = 3 Sat No Incorrect
4 Incorrect - - - - - Incorrect
5 Correct Sat Yes a = 5, b = 3, c = 3 Sat No Incorrect

By abstracting program inputs as symbols, symbolic exe-
cution interprets program traces and formulates each branch
condition along the traces. Symbolic execution is considerably
more precise than traditional data-flow analysis, and when
the constraint solver finds a solution for the path deviation
constraint, it naturally provides counterexamples that lead to
variant branch selection, making it easier for users to debug
their submissions.

In general, we perform symbolic execution along the trace
and build a path constraint formula parameterized with the
inputs. Our symbolic execution models each branch condition,
and the path constraint formula is a conjunction of all the
branch conditions. Given symbolic formulas from two execu-
tion traces, we build a path deviation constraint and attempt
to find a satisfiable solution by invoking the constraint solver
(see §III-D for details).

D. Path Deviation Identification
After constructing the path constraint formula for each trace,

the next step is to identify inputs that yield path deviations.
The workflow is shown in Fig. 3. Intuitively, given path
constraints from two execution traces, inputs that can lead
to path deviation should satisfy one constraint formula, while
unsatisfying the other one. In other words, we would like to
find the symmetric difference given the formulas from two
paths. To this end, we propose the following constraint:

(Fs ∧ ¬Fr) ∨ (¬Fs ∧ Fr)

The above constraint contains formulas derived by analyzing
the execution trace of the reference (Fr) as well as the submis-
sion (Fs). Constraint Fs∧¬Fr searches for inputs that satisfy
the formula for the submission but not the reference (i.e., a
path deviation in the reference), and constraint ¬Fs∧Fr finds
path deviations in the submission trace. In general, satisfiable
solutions for the above constraint indicate the existence of path
deviation, and whenever there is no satisfiable solution for the
above constraint, we are assured that the given trace is free
from path deviation.
Example. Consider the following two programs: one checks
condition x > 0, while the other checks x > 1:

f(x) = if (x > 0) then y = 2 else y = 3
g(x) = if (x > 1) then y = 2 else y = 3

Given the input 0, symbolic execution yields constraints
¬(x > 0) ∧ (y = 3) and ¬(x > 1) ∧ (y = 3) for the two
programs, respectively. Hence, the path deviation constraint
for these two traces is:

(¬(x > 0) ∧ (x > 1)) ∨ ((x > 0) ∧ ¬(x > 1))

Identifying satisfiable solutions for the above constraint is a
typical satisfiability modulo theory (SMT) problem, and we
employ SMT solvers to solve the constraint. We note that if
the constraint is solvable, the SMT solver provides a coun-
terexample (i.e., the “satisfiable” solution) that can cause the
path deviation. With the original input (a = 5, b = 3, c = 2),
our motivating example Submission 2 (Fig. 1c) yields a path
deviation constraint ((a ≥ b) ∧ (a ≥ c)) ∧ ¬((a > b) ∧ (a >
c)) ∨ ¬((a ≥ b) ∧ (a ≥ c) ∧ ((a > b) ∧ (a > c)), and
the SMT solver reports “satisfiable” together with a concrete
counterexample (a = 5, b = 5, c = 3). Obviously, this
counterexample can truly cause a path deviation in the trace
of Submission 2.

E. Path Equivalence Check

To compare a submission with the reference implemen-
tation, our technique calculates path deviations given the
execution traces of two implementations (§III-D). However,
as previously mentioned, the existence of path deviations may
not actually lead to incorrect submissions. Suppose analyzing
path R1 and S1 reveals a path deviation S2 in the submission
program. Then path R1 may actually be equivalent to S2 under
the input space as the conjunction of S2 and R1. Thus, this
yields a false positive of the deviation detection.

Our study shows that it is very common to find in student
submissions that students prefer to solve a problem case-by-
case. For example, the analysis of our motivating examples
(Fig. 1) shows that given input a = 5, b = 5, c = 3,
Submission 2 (Fig. 1c) and Submission 3 (Fig. 1d) both have
path deviations compared to the reference. However, further
study of these two submissions shows that the deviating path in
Submission 2 actually yields the same output as the reference,
while only Submission 3 has a truly incorrect output.

To tackle this issue, we propose checking the path equiva-
lence between two suspicious paths in different programs. The
workflow is illustrated in Fig. 4. To illustrate this more clearly,
suppose our path deviation analysis identifies one deviation
in the submission program. Then our goal in this step is
to compare the semantics of the deviating path Pd in the
submission with the corresponding path Pr in the reference,
given one input xd that causes the deviation.

Two paths from different programs are considered to have
“path equivalence” if their semantics are always identical.
Hence, we check whether it is possible to identify an input
from the conjunction of two path constraints that would yield
different program outputs. Given inputs from the conjunction
of two path constraints, two programs must execute the desired

5

Trace Logger Symbolic
Executor

Formula
Constructor

Constraint
SolverExecutables unsat

sat

Fig. 3. Deviation identification

Symbolic
Executor

Constraint
SolverTraces Equivalent?Formula

Constructor

Fig. 4. Path equivalence checking

path and reach the observed program points, at which time we
check whether the outputs are different. Thus, we propose the
following constraint:

(Or 6= Od) ∧ (Fd ∧ Fr)

O represents the symbolic outputs of the two programs
parameterized with the input variables, and F represent the
path constraints of the two paths. In general, satisfiable so-
lutions for the above constraint show that there is an input
that satisfies both path constraints (Fd and Fr) and can yield
different outputs for the two paths. In other words, we confirm
the deviating path (Pd) can truly lead to incorrect program
outputs (i.e., a true positive). Conversely, if the constraint
solver reports “unsatisfiable” for this constraint, we conclude
that no input can lead to different program outputs along these
two traces, thus ruling out a false positive in our path deviation
analysis.

In Submission 2 and Submission 3 of our motivating exam-
ple, given the deviation paths detected with input a = 5, b =
5, c = 3, the corresponding symbolic outputs are:

Or = a,Od2
= b,Od3

= c.

And the path constraint for each trace is:

Fr = ((a ≥ b) ∧ (a ≥ c))

Fd2
= (¬(a < b) ∧ (b > c))

Fd3
= (¬((a > b) ∧ (a > c)) ∧ ¬((b > a) ∧ (b > c))).

After checking path equivalence constraints, the constraint
solver reports “unsatisfiable” given the constraint derived
from Fr and Fd2 , though it identifies satisfiable solutions
for the other case. Thus, we can confirm that Submission 3
is a true positive (i.e., incorrect submission) and output the
feedback with the generated input a = 5, b = 5, c = 3 as a
counterexample. We can then re-launch the symbolic execution
(§III-C) for a new trace of Submission 2 and the reference.

IV. IMPLEMENTATION

AUTOGRADER is written in Python and has over 1,000 lines
of core implementation. We employ an open-source white-box
fuzzer (Pathgrind [19]) to generate test inputs. To make the
most of this engine, we rewrite some of the test programming
assignments to fit the input format.

The program execution trace is generated by Pin [24], a
widely used dynamic binary instrumentation tool. Pin provides
the infrastructure to intercept and instrument the execution
of a binary. During execution, Pin inserts the instrumentation
code into the original code and recompiles the output with
a Just-In-Time (JIT) compiler. We develop a plugin for Pin
so that we can log the executed instructions (i.e., traces).
Traces usually begin at a taken branch and end with an
unconditional branch, including calls and returns. We utilize
another Pin plugin to perform the taint analysis on the trace.
As previously mentioned, only instructions that are relevant
to the inputs are kept after the taint analysis. Furthermore, we
employ the commonly used binary analysis tool BAP ([25])
to lift assembly instructions of the trace into an intermediate
representation (IR) specified by BAP [26]. BAP only supports
a subset of x86, which does not include floating point and
privileged instructions. This is one of the limitations of the
current implementation.

Trace-based symbolic execution interprets instructions along
the trace one after another, and generally speaking, both
forward and backward symbolic execution can capture path
constraints during this step. Our preliminary implementation
shows that symbolic execution based on the Dijkstra and
Flanagan-Saxe style weakest precondition generally yields
more succinct formulas in our context [16], hence, for our
implementation, we adopt the weakest precondition tech-
nique [27] to build our symbolic formula.

To implement the symbolic execution, we employ the
trace analysis component of BAP, which provides weakest
precondition computation. Furthermore, we use a common
SMT solver (STP [28]) to solve constraints generated during
path deviation detection (§III-D) and path correspondence
analysis (§III-E).

Guarded Command Language. Weakest preconditions
are calculated over programs written in the Guarded
Command Language (GCL). Before we calculate the weakest
precondition, BAP translates the IR into this GCL as specified
below:

S, T ::= Id := Expr
| assert Expr
| assume Expr
| S ; T
| S 2 T

6

The language contains assignment statements: x:=E, which
sets the value E to program variable x. The assert and
assume statements have no effect if the given expression
is evaluated as true; otherwise, the assert statement
fails and the assume statement blocks the execution. The
operational semantic is defined such that every step either
blocks, fails, or terminates. The statement S ; T is the
sequential composition of S and T where T executes only
after S terminates. S 2 T is the nondeterministic choice
between S and T , and it is equivalent to (assume B;S)
(assume ¬B;T). Although the GCL looks simple, it
is expressive enough to convert x86 assembly into this
language [29]. The translation is straightforward and is
discussed elsewhere [30].

Weakest Precondition. The weakest precondition method
builds the constraints of inputs to characterize programs [31]
and execution traces [16]. Let Q be the postcondition of
a program, while the weakest precondition wp(P,Q) of a
program P in relation to the postcondition Q is a boolean
formula F over the input space of the program such that if
F holds, then the program execution must satisfy Q.

We denote the weakest precondition of a program trace
as wp(T,Q), where T is the execution trace and the
postcondition Q is the program output. Assume trace T
contains a sequence of instructions < i1, i2, ..., in >; the
calculation of wp(T,Q) can thus be inductively defined.
That is, we first calculate wp(in, Q) = Qn−1, and then
wp(in−1, Qn−1) = Qn−2, until wp(i1, Q1) = Q0.

Processing Loops. As in previous works [32], [33], we
calculate the weakest precondition targeting acyclic GCL
programs converted from the IR. If program invariants are
available, the loops will be converted directly into GCL [30];
otherwise, we consider bounding the loop iterations to make
the program acyclic. Then we can calculate the predicates
automatically based on the program syntax. In BAP’s
implementation, the -unroll option unrolls the loop to a
maximum of 32 iterations while checking the loop conditions
and eliminating the back edge. For example, for the loop
while e S, by expanding one iteration, we get (assume
e; S; while e S) 2 assume ¬e. We can expand the
program as many times as we would like and bound the loop
iteration with an assert statement.

Availability. We have released the tool1 for public
dissemination.

V. DISCUSSION

We have proposed a program-semantics-based method for
autograding programming assignments. Our method relies on
detecting semantic differences between the reference imple-
mentation and student submissions. While program equiva-
lence is generally undecidable, we have developed a practical

1https://github.com/s3team/AutoGrader

tool with the proposed method. Our method is superior to
the more common test-based methods in terms of the reduced
effort to create test suites. It also tackles the soundness issue
of test-based methods and detects false negatives of online
platform judges. Moreover, it outperforms other reference-
based methods that require an additional error model to be
specified. Another advantage is that our method is resilient
to program variations. Theoretically, it can handle most cases
even if student submissions often vary. In this section, we
analyze several typical variations and explain how our method
overcomes these challenges.

As previously mentioned, weakest precondition calculation
is the core technique that we leverage to perform symbolic
execution. Before discussing the technique’s resilience to
program variations, we introduce the three main properties
of the weakest precondition: Commutative, Combinative, and
Associative, as presented in Table II.

A. Renaming

Students may use different names for the same variable.
However, since we compile source code into program binaries
and directly analyze the program execution traces, all the
names are pruned in the assembly instructions in the program
binaries (and further in the execution traces). That is, our
method is resilient to renaming.

B. Noise Instruction

Noise instructions are common in submissions of students
in the type of entry-level programming courses that we target.
To solve a problem, students usually try every method they
can think of and revise over and over again. As a result,
redundant instructions remain. Suppose an irrelevant instruc-
tion I1 is inserted after instruction I0. Our tool computes
the weakest precondition wp(I0; I1, Q). Because I1 is an
irrelevant statement, we have wp(I0; I1, Q) = wp(I0, Q). This
equation can be extended to the case of multiple irrelevant
instructions, wp(I0; I1; ...In, Q) = wp(I0, Q), where I1 to In
are irrelevant instructions. Therefore, our method is resilient
to noise instructions.

C. Statement Reordering

Statement reordering specifies the case when the order
of two or more instructions without control or data flow
dependence is rearranged. Suppose we consider two such
instructions, I0 and I1. The computed weakest precondition is
wp(I0; I1, Q). But when we switch these two instructions, the
computed weakest precondition becomes wp(I1; I0, Q). We
have wp(I0; I1, Q) = wp(I1; I0, Q) according to the Commu-
tative property, when the two instructions are independent. In
addition, this equation still holds when multiple instructions
are reordered; in fact, such a problem can be divided into
several subproblems, each of which is a reordering of two
instructions. Therefore, our method is resilient to statement
reordering.

7

TABLE II
PROPERTY FOR WEAKEST PRECONDITION CALCULATION

Commutative : wp(I0; I1, Q) = wp(I1; I0, Q) if I0, I1 are independent
Combinative : wp(I0, Q) = wp(I1; I2, Q) if I0 is semantically equivalent to I1; I2
Associative : wp(I2,wp(I1; I0, Q)) = wp(I2; I1,wp(I0, Q))

D. Loop Unwinding

Complete or partial loop unwinding is common among
student submissions. We often observe that students tend to
compute boundary conditions separately from a loop; there-
fore, their submissions vary from each other. However, our
method is based on dynamic execution traces where the loops
are all completely unwound. As a result, our method is resilient
to loop unwinding.

E. Instruction Splitting

Instruction splitting refers to the case where an instruc-
tion I0 can be split into two instructions I1 and I2 in
student submissions. This is commonly found in students’
assignments. The computed weakest precondition for the two
instructions is wp(I1; I2, Q), which is equivalent to wp(I0, Q)
according to the Combinative property, as long as I1 , I2
are semantically equivalent to I0. This also applies to cases
in which one instruction is split into multiple instructions.
Moreover, instruction aggregation can be viewed as the reverse
of instruction splitting, which can also be addressed by our
technique. Therefore, our method is resilient to instruction
splitting and aggregation.

F. Trace Splitting

Trace splitting refers to equivalent paths in traces. Two
paths are equivalent if they yield the same computational
result. Normally we see such cases when students use different
calculation processes for some boundary conditions. Despite
the difference in executions, they achieve the same computa-
tional results as the reference implementations. For example,
when students attempt to compute the absolute value of x,
they either check the condition x >= 0 or the condition
x > 0. In this case, both solutions are correct, but the
boundary case x = 0 can cause a path deviation. Conceptually
similar to what we have described in Section III-E, trace
splitting can cause “deviations” that lead to false positives in
grading. Our preliminary studies show that this is actually a
common case in student submissions. Thus, we propose a trace
equivalence checking technique (§III-E) to detect cases where
path deviations actually result from trace splitting. With this
technique, our method is resilient to trace splitting.

VI. EVALUATION

We have implemented our method using a tool called
AUTOGRADER. The tool consists of three main stages: (i)
input generation, (ii) deviation detection, and (iii) equivalence
checking, as shown in Figure 2. The purpose of AUTO-
GRADER is to provide feedback: correct or incorrect with
counterexamples for programming assignments. In this sec-
tion, we present an evaluation of AUTOGRADER.

A. Benchmarks

We collected the submitted programs for 10 program-
ming problems from codechef.com [10]; the programming
programs are listed in Table III. codechef.com is an online
platform for beginners to practice programming. It will provide
immediate feedback using a test case-based methodology.
From codechef.com, we selected beginner-level problems for
which there existed clear specifications to construct correct
reference implementations. Before we fed a submission to
AUTOGRADER, we customized it to take test arguments from
the standard input, so that we can apply our tracer to it. In
addition, we only selected those submissions that had same
input types. This is common in student assignments where
function inputs and outputs are specified by instructors. We
also eliminated a small number of submissions that contained
type cast and multi-thread that may affect our analysis.

Note that each collected submission was associated with
the ground truth of its correctness. If the submission was
incorrect, we collected a detailed error message to explain the
reason for its failure. Typical reasons were that compilation
error, runtime error, and incorrect outputs. Considering our
research context, we only selected submissions that were
compilable and executable. Hence, incorrect programs were
selected because of logic errors (i.e., incorrect outputs). The
total number of submissions was 10,270 for 10 different prob-
lems, among which 3,351 were correct submissions and 6,919
were incorrect ones. The average number of lines of code each
of these attempts, which ranged from 27 (CHEFKEY) to 73
(BOOKCHEF), was 46.

B. Evaluation Metric

A detailed breakdown of the number of examples for each
benchmark problem is reported in Table III. We evaluated our
tool with respect to effectiveness and performance. Effective-
ness measures the fraction of correct judgments that are made
by our tool compared with the ground truth. Performance is
reported to show the cost of our proposed technique.

C. Effectiveness

As aforementioned, considering the potential path explosion
problem of our white-box fuzzer, we set up a time limit
(five minutes) to grade a submission. It is reasonable that in
practice, people will not wait that long to receive a feedback
report for a program submission. This five-minute threshold
would include the whole analysis process; that is, multiple
rounds of input generation, deviation detection, and equiva-
lence checking.

Table III reports the effectiveness of our method. Accuracy
is defined as the portion of correctly classified cases. The
overall accuracy of our system was 92.80%, and we found

8

TABLE III
BENCHMARK PROBLEMS

Problem Statistics Effectiveness Performance
Correct # Incorrect LoC # Timeout Accuracy E-Accuracy IG (s) PD (s) EC (s) # Iter. Total (s)

1. ALEXTASK 550 546 51 172 83.12% 98.81% 0.87 3.86 1.89 4 25.48
2. CHEFAPAR 262 454 29 14 95.53% 97.48% 0.62 2.27 1.81 3 13.82
3. ENTEXAM 203 1719 61 116 93.65% 99.68% 1.03 2.31 1.20 5 32.99
4. NOTINCOM 675 351 34 145 85.76% 99.90% 0.60 3.50 1.91 4 16.61
5. ANKTRAIN 419 387 41 22 96.52% 99.25% 0.67 3.04 3.27 2 14.02
6. TRISQ 445 367 27 14 96.06% 97.78% 0.47 2.26 1.81 3 12.24
7. KOL16B 262 437 35 29 94.56% 98.71% 0.59 1.81 1.82 3 13.46
8. RGAME 238 723 41 50 93.86% 99.06% 0.71 1.69 1.78 3 15.89
9. BOOKCHEF 77 208 73 40 85.61% 99.65% 1.23 3.86 1.50 6 30.71
10. CHRL4 220 1727 49 137 89.86% 97.49% 0.92 2.18 1.92 3 24.34
Total 3351 6919 46 794 92.80% 98.62% - - - - -
(IG: Input Generation, PD: Path Deviation, EC: Equivalence Checking.)

that most of the tests were indeed cut off due to the time
limitation. Further study of the properly graded submissions
showed promising results; we found that there was no false
negative found in our evaluation. In other words, no incorrect
submission is graded as correct within a reasonable time limit,
which is critical for a practical tool.

By further studying the evaluation results, one interesting
observation is that all the time-out submissions were labeled
correct according to the ground truth. Although our method
does not theoretically cover paths of the whole program, in
practice, it is reasonable to consider a submission correct
if AUTOGRADER is unable to yield path deviations within
a considerable amount of time. Given this observation, we
refined the decision procedure of AUTOGRADER to mark
a submission as correct whenever its analysis reached the
time limit. We further re-graded the time-out benchmarks
as “correct”. The measurements are reported as Extended
Accuracy (E-Accuracy) in Table III. Overall, our tool achieved
an accuracy of 98.62%.

In what follows, we discuss two reasons that for the
potential mis-classifications of correct/incorrect submissions:
Incomplete Test Suites and Same Output Coincidence.

1) Incomplete test suite: An incomplete test suite is a
typical problem that may cause our method to fail. While
browsing the forums of online grading platforms, we noticed
the issue of “not having comprehensive test suites” was very
common [34]–[36].

The incompleteness of test suites is primarily because of two
reasons, theoretical limit and practical workload. Theoretically,
it is impossible to generate test inputs that can fully cover all
possible behaviors of a program. In addition, to reduce the
workload of the online grading services, a limited number of
test cases that deliver a reasonable processing time is usually
adopted.

Interestingly, we found 11 false positives of AUTOGRADER.
Further study showed that these false positives are in fact false
negatives of the testing-based approach used in codechef.com.
That is, buggy submissions were labeled as “correct” in the
ground truth because of incomplete test cases.2

2Our system detected 11 false negatives. The submission numbers are:
12318552, 12320180, 12271123, 12302502, 12312102, 12330737, 12330861,
12330880, 12330906, 12640689, and 9912397.

1 max3(int a, int b, int c) {
2 if (a>=b && a>=c)
3 return a−b;
4 else if (b>=a && b>=c)
5 return b;
6 else
7 return c;
8 }

2) Same output coincidence:
As previously discussed, AU-
TOGRADER reports incorrect-
ness when: 1) different outputs
are triggered, or 2) the same
output but true path deviations

are detected. True path deviations are guaranteed by the con-
junction of different output formulas and different path formu-
las. However, there is still a small chance that the same output
value is yielded and no path deviation is detected given an
incorrect submission. For example, consider the listing above:
The bug of this submission is on line 3, where the correct
return value should be a but the buggy implementation returns
a − b. If AUTOGRADER uses inputs a = 3, b = 0, c = 1, the
corresponding output of the incorrect program will be the same
as the reference. Therefore, AUTOGRADER will mis-grade this
incorrect submission as correct. Nevertheless, as reported in
our evaluation of real-world programming submissions, no
false negative was found, which indicates that the “same result
coincidence” problem is not likely in practice.

D. Performance

We also evaluated the performance of the proposed frame-
work. We conducted the evaluations on a desktop with a
Xeon E5-1607 3.00GHz CPU and 4GB memory running 64-
bit Ubuntu 12.04 LTS. We set up the evaluation and recorded
the average time for one iteration, as well as the number of
iterations for which the tool detected deviations. We report our
experimental results in Table III and Figure 5.

For the 10 problem sets we analyzed, the average time for
one iteration for each problem, including input generation,
path deviation, and equivalence checking, ranged from 4.19
seconds to 6.99 seconds. The average iteration number for
each problem to detect deviations ranged from 2 to 6. Of the
incorrect submissions, 73.65% were detected erroneous within
5 iterations and 99.78% were within 20 iterations. This result
indicates a fast convergence over the analyzed data. For 5-
iteration detection, the problem ANKTRAIN had the highest
percentage (97.16%) of incorrect submissions detected. The
solution to this problem was a case-by-case analysis that
contained 9 conditional branches. Student submissions were
decided incorrect mostly within the 9 branches; only a small

9

ALE
XTA

SK

CHEF
APA

R

EN
TE

XAM

NOTI
NCOM

ANKT
RAIN

TR
IS

Q

KO
L1

6B

RGAM
E

BOOKC
HEF

CHRL4
0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

<=5 5-10 10-15 15-20 >20

Fig. 5. Performance for AUTOGRADER

portion of them were over 10 iterations due to equivalence
checking. The problem BOOKCHEF had the lowest percent-
age (64.92%) of submissions that were detected as erroneous
within 5 iterations. The solution to this problem had nested
loops which cause a longer analysis time.

At this point, we have only tested our framework on an
entry-level dataset for which the generated traces were short
to analyze and the formulas were easier to solve. Additionally,
despite the soundness of one trace, our method is incomplete
in terms of the whole program. It is future work to improve
the scalability and completeness of the tool so that it is more
practical to tackle more complicated problems.

VII. RELATED WORK

We have proposed a formal-semantics-based method to de-
termine the correctness of programming problem submissions.
Our research seeks to identify semantic-level differences in
input programs that can lead to potential path deviations.
In this section, we review related work on autograding and
discuss existing methods for detecting semantic differences in
programs.

A. Automatic Grading

The automatic assessment of programming assignments has
been studied over years, with many tools being presented. The
majority of such systems are testing-based [3]. In general,
researchers have mainly focused on checking functional cor-
rectness or, in other words, the program validity [37]. Targeted
platforms include Java [6], [9], web applications [8], and
domain-specific languages [4]. Often automatic assessment
is done by examining program behaviors on a set of test
inputs [38]–[40]. The test cases can be either manually crafted
or automatically generated [4], [5]. With the proposed systems,
inputs that fail the tests are provided as feedback. However,
generating a set of test inputs that can cover all the possible
errors in student submissions is impossible. Recent studies
have made contributions to test oracle improvement based on
search-based test generation [41]–[44]. Yet most of today’s
automated tools rely on the instructor to provide sets of test
inputs.

While black-box testing tests a program with input-output
pairs, white-box testing tests the internal structure of a pro-
gram. Some studies have proposed using symbolic execu-
tion [45]–[47] to automatically generate high-coverage test
suites. Symbolic execution has been applied to automated
grading. With symbolic execution engines such as KLEE [32],
researchers reuse industrial-grade automatic testing tools for
automated grading to provide timely feedback on students’
C [48] and JavaScript [5] program submissions.

Another popular approach to automatic grading measures
the similarity between abstract representations of a stu-
dent’s submission and corresponding reference implementa-
tions [49]–[51]. Although promising, the theoretical elegance
of this approach is overtaken by the uncertainty. The detection
of a similarity between a program and reference implemen-
tations is unable to provide students with hints for the root
causes that lead to the failure. Additionally, variations in
reference implementations are challenging to address.

Researchers have also proposed some machine learning-
based autograding methods. These methods rely on features
extracted from the basic descriptions of a program, (e.g.,
its control flow). By adopting clustering [52]–[54] and clas-
sification [55] algorithms, these systems can determine the
correctness of a submission. However, our study shows that
the overall performance of such machine learning-based tech-
niques is not as effective as our method.

B. Program Semantic Difference Detection

We also reviewed a number of techniques that identify
semantic differences among programs based on either static or
dynamic analysis. Many of these techniques are designed for
tracking software evolution. Jackson and Ladd [56] capture de-
pendencies between inputs and outputs, but their work does not
leverage any theorem-proving technique. More recent analyses
have been based on regression verification [57], which uses
SMT solvers to check the equivalence of C programs. Some
progress has been made by SYMDIFF [58], which converts
source code to an intermediate verification language and then
identifies semantic differences. In contrast to previous work,
this tool expresses the results in terms of the observable input-
output behavior of programs, rather than syntactic structures.

Symbolic execution has been widely used in recent re-
search to capture execution semantics. Differential symbolic
execution [59] detects semantic differences by using symbolic
execution to enumerate paths and check equivalence. UCK-
LEE [60] synthesizes inputs to two C programs and uses
bit-accurate symbolic execution to verify that the produced
formulas. These two methods are conceptually similar to
AUTOGRADER, but they focus on source code. We also
observe similar ideas in studies of fine-grained analysis of
binaries. BinHunt [61] and iBinHunt [62] perform symbolic
execution within basic blocks and verify the generated for-
mulas represent input-output relations. However, these tools
are insufficient to identify similarities or differences across
basic blocks. Therefore, trace-oriented analyses are proposed

10

to identify semantic differences beyond the ability of basic
blocks [16], [17].

VIII. LIMITATIONS AND FUTURE WORK

In this section, we discuss the limitations of AUTOGRADER
and suggest directions for future work.

First, AUTOGRADER only determines the correctness of
programming assignments and provides counterexamples. In
other words, our method decides the functional correctness.
Off-the-shelf automatic graders usually rely on the number
of passed tests to mark a submission’s “grade” in addition
to its correctness. However, a meaningful grading system
should identify the shortest distance between the correct
implementation and submissions. Traditional grading methods
do not represent the score in this way and rely heavily
on the quality of test suites. On the contrary, our method
conducts the analysis with finer granularity. In the future, we
plan to leverage model counters [63], which approximate the
number of satisfiable models for boolean formulas, or similar
techniques to calculate the distance between submissions and
the correct reference. Moreover, on top of the recorded trace,
we plan to detect the redundant code in a program and use
this information to grade assignments in terms of “elegance”.

Second, AUTOGRADER is limited by the capability of
constraint solver and symbolic execution tools. During the
path deviation detection process, if the constraint solver finds a
sat assignment to the formula, it is truly satisfiable. However,
an output of no may mean the formula is unsat, or the
solver cannot find a satisfiable assignment limited by its
capability. This can potentially lead to false negatives. We
tackle the problem by iterating the process for many rounds,
thereby reducing the probability of such cases. A similar
situation may occur during the equivalence checking process,
and our tool would theoretically report false positives. In our
experiments, we have not seen such false positives or false
negatives. Finally, AUTOGRADER suffers from the common
limitations of current symbolic execution tools, such as that
they cannot perform non-linear arithmetic operation or floating
point calculation.

IX. CONCLUSION

We have proposed a formal-semantics-based approach for
automatically grading programming assignments with a single
correct reference implementation provided by the instructor.
By searching for inputs that can lead to path deviations
between a student’s submission and the reference implemen-
tation, we can determine the correctness of the submission
and provide counterexamples for an incorrect submission. We
have implemented this novel approach using a tool called
AUTOGRADER and evaluated our technique over a dataset
containing 10,270 submissions collected from an online pro-
gramming site. The experiment revealed that our proposed
method yielded no false negatives, while the online program-
ming site yielded 11 false negatives due to incomplete test
suites.

X. ACKNOWLEDGMENT

We thank the reviewers for their thorough comments and
suggestions. The work was supported in part by the National
Science Foundation (NSF) under grant CNS-1652790, and the
Office of Naval Research (ONR) under grants N00014-16-1-
2912, N00014-16-1-2265, and N00014-17-1-2894.

REFERENCES

[1] S. Carson, “MOOC,” https://ocw.mit.edu/about/media-coverage/
press-releases/chi600intro-announcement/, 2013, [Online; accessed
21-March-2017].

[2] D. S. Weld, E. Adar, L. Chilton, R. Hoffmann, E. Horvitz, M. Koch,
J. Landay, C. H. Lin, and Mausam, “Personalized online education - a
crowdsourcing challenge,” in AAAI Workshop - Technical Report, vol.
WS-12-08. AAAI, 2012, pp. 159–163.

[3] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of
recent systems for automatic assessment of programming assignments,”
in Proceedings of the 10th Koli Calling International Conference on
Computing Education Research. ACM, 2010, pp. 86–93.

[4] N. Tillmann, J. De Halleux, T. Xie, S. Gulwani, and J. Bishop, “Teaching
and learning programming and software engineering via interactive
gaming,” in Proceedings of the 2013 International Conference on
Software Engineering, ser. ICSE ’13, 2013, pp. 1117–1126.

[5] L. Gong, “Auto-grading dynamic programming language assignments,”
University of California, Berkeley, Tech. Rep., 2014.

[6] M. T. Helmick, “Interface-based programming assignments and auto-
matic grading of Java programs,” in Proceedings of the 12th Annual
SIGCSE Conference on Innovation and Technology in Computer Science
Education, ser. ITiCSE ’07. ACM, 2007, pp. 63–67.

[7] M. Sztipanovits, K. Qian, and X. Fu, “The automated web application
testing (AWAT) system,” in Proceedings of the 46th Annual Southeast
Regional Conference, ser. ACM-SE 46. ACM, 2008, pp. 88–93.

[8] X. Fu, B. Peltsverger, K. Qian, L. Tao, and J. Liu, “APOGEE: Au-
tomated project grading and instant feedback system for web based
computing,” in Proceedings of the 39th SIGCSE Technical Symposium
on Computer Science Education, ser. SIGCSE ’08, 2008, pp. 77–81.

[9] M. Joy, N. Griffiths, and R. Boyatt, “The BOSS online submission and
assessment system,” J. Educ. Resour. Comput., vol. 5, no. 3, Sep. 2005.

[10] CodeChef, “CodeChef,” https://www.codechef.com/, 2009, [Online; ac-
cessed 21-April-2017].

[11] CodeForces, “CodeForces,” https://hackerrank.com/, 2009, [Online; ac-
cessed 21-April-2017].

[12] Hackerrank, “Hackerrank,” https://www.hackerrank.com/, 2017, [Online;
accessed 21-April-2017].

[13] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback
generation for introductory programming assignments,” in Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’13, 2013, pp. 15–26.

[14] S. Gulwani, I. Radiček, and F. Zuleger, “Feedback generation for
performance problems in introductory programming assignments,” in
Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2014, 2014, pp. 41–51.

[15] S. Gulwani, I. Radicek, and F. Zuleger, “Automated clustering and
program repair for introductory programming assignments,” CoRR, vol.
abs/1603.03165, 2016. [Online]. Available: http://arxiv.org/abs/1603.
03165

[16] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and D. Song, “Towards
automatic discovery of deviations in binary implementations with appli-
cations to error detection and fingerprint generation,” in Proceedings of
16th USENIX Security Symposium on USENIX Security Symposium, ser.
SS’07. USENIX Association, 2007, pp. 15:1–15:16.

[17] F. Zhang, D. Wu, P. Liu, and S. Zhu, “Program logic based software
plagiarism detection,” in 2014 IEEE 25th International Symposium on
Software Reliability Engineering. IEEE, Nov 2014, pp. 66–77.

[18] J. Ming, F. Zhang, D. Wu, P. Liu, and S. Zhu, “Deviation-based
obfuscation-resilient program equivalence checking with application
to software plagiarism detection,” IEEE Transactions on Reliability,
vol. 65, no. 4, pp. 1647–1664, 2016.

[19] A. Sharma, “Pathgrind,” https://github.com/codelion/pathgrind, 2013,
[Online; accessed 21-March-2017].

11

[20] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” in PLDI, no. 6. ACM, 2005, pp. 213–223.

[21] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz
testing,” in Proceedings of the 16th Annual Network and Distributed
System Security Symposium (NDSS), 2008, pp. 151–166.

[22] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[23] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in 2010 IEEE symposium on Security
and privacy. IEEE, 2010, pp. 317–331.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’05. ACM, 2005, pp. 190–200.

[25] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary
analysis platform,” in Proceedings of the 23rd International Conference
on Computer Aided Verification (CAV), 2011, pp. 463–469.

[26] ——, “BIL,” https://github.com/BinaryAnalysisPlatform/bil, 2017.
[27] E. W. Dijkstra, A Discipline of Programming. Prentice Hall, 1997.
[28] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and

arrays,” in International Conference on Computer Aided Verification.
Springer, 2007, pp. 519–531.

[29] D. Brumley, H. Wang, S. Jha, and D. Song, “Creating vulnerability sig-
natures using weakest preconditions,” in Computer Security Foundations
Symposium, 2007. CSF’07. 20th IEEE. IEEE, 2007, pp. 311–325.

[30] C. Flanagan and J. B. Saxe, “Avoiding exponential explosion: Gen-
erating compact verification conditions,” in Proceedings of the 28th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’01. ACM, 2001, pp. 193–205.

[31] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[32] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08, 2008, pp. 209–224.

[33] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’08.
ACM, 2008, pp. 206–215.

[34] leetcode, “Not enough test cases,” https://discuss.leetcode.com/topic/
22381/not-enough-test-cases/2?page=1, 2015, [Online; accessed 21-
April-2017].

[35] ——, “Majority Element - Not enough test cases,” https://discuss.
leetcode.com/topic/77846/majority-element-not-enough-test-cases,
2017, [Online; accessed 21-April-2017].

[36] ——, “Bug report, not enough test cases,” https://discuss.leetcode.com/
topic/58802/bug-report-not-enough-test-cases, 2017, [Online; accessed
21-April-2017].

[37] J. B. Hext and J. Winings, “An automatic grading scheme for simple
programming exercises,” Comm. ACM, vol. 12, no. 5, pp. 272–275, 1969.

[38] M. Wick, D. Stevenson, and P. Wagner, “Using testing and JUnit
across the curriculum,” in Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science Education, ser. SIGCSE ’05. ACM,
2005, pp. 236–240.

[39] u. von Matt, “Kassandra: The automatic grading system,” SIGCUE
Outlook, vol. 22, no. 1, pp. 26–40, Jan. 1994.

[40] M. Joy, N. Griffiths, and R. Boyatt, “The BOSS online submission and
assessment system,” Journal on Educational Resources in Computing
(JERIC), vol. 5, no. 3, p. 2, 2005.

[41] G. Jahangirova, D. Clark, M. Harman, and P. Tonella, “Test oracle
assessment and improvement,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, 2016, pp. 247–258.

[42] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based
testing for non-functional system properties,” Information and Software
Technology, vol. 51, no. 6, pp. 957–976, 2009.

[43] J. M. Rojas, G. Fraser, and A. Arcuri, “Seeding strategies in search-
based unit test generation,” Software Testing, Verification and Reliability,
vol. 26, no. 5, pp. 366–401, 2016.

[44] F. G. de Freitas and J. T. de Souza, “Ten years of search based
software engineering: A bibliometric analysis,” in Proceedings of the
Third International Symposium on Search Based Software Engineering,
2011, pp. 18–32.

[45] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz,
and N. Rungta, “Symbolic PathFinder: integrating symbolic execution
with model checking for java bytecode analysis,” Automated Software
Engineering, vol. 20, no. 3, pp. 391–425, 2013.

[46] G. Birch, B. Fischer, and M. Poppleton, “Fast test suite-driven model-
based fault localisation with application to pinpointing defects in student
programs,” Software & Systems Modeling, vol. 1, 2017.

[47] C. S. Păsăreanu and W. Visser, “A survey of new trends in symbolic
execution for software testing and analysis,” International Journal on
Software Tools for Technology Transfer (STTT), vol. 11, no. 4, pp. 339–
353, 2009.

[48] J. Gao, B. Pang, and S. S. Lumetta, “Automated feedback framework
for introductory programming courses,” in Proceedings of the 2016
ACM Conference on Innovation and Technology in Computer Science
Education. ACM, 2016, pp. 53–58.

[49] G. Michaelson, “Automatic analysis of functional program style,” in
Australian Software Engineering Conference, 1996., Proceedings of
1996. IEEE, 1996, pp. 38–46.

[50] K. Ala-Mutka, T. Uimonen, and H.-M. Jarvinen, “Supporting students
in C++ programming courses with automatic program style assessment,”
Journal of Information Technology Education, vol. 3, no. 1, pp. 245–262,
2004.

[51] M. Vujošević-Janičić, M. Nikolić, D. Tošić, and V. Kuncak, “Software
verification and graph similarity for automated evaluation of students’
assignments,” Information and Software Technology, vol. 55, no. 6, pp.
1004–1016, 2013.

[52] D. Perelman, J. Bishop, S. Gulwani, and D. Grossman, “Automated
feedback and recognition through data mining in code hunt,” Microsoft,
Tech. Rep., 2015.

[53] S. Parihar, Z. Dadachanji, P. K. Singh, R. Das, A. Karkare, and
A. Bhattacharya, “Automatic grading and feedback using program repair
for introductory programming courses,” in Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science
Education, ser. ITiCSE ’17. ACM, 2017, pp. 92–97.

[54] Y. Pu, K. Narasimhan, A. Solar-Lezama, and R. Barzilay, “sk p: a neural
program corrector for moocs,” in Companion Proceedings of the 2016
ACM SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity. ACM, 2016,
pp. 39–40.

[55] S. Srikant and V. Aggarwal, “Automatic grading of computer programs:
A machine learning approach,” in Proceedings of the 12th International
Conference on Machine Learning and Applications, vol. 1. IEEE, 2013,
pp. 85–92.

[56] D. Jackson, D. A. Ladd et al., “Semantic diff: A tool for summarizing
the effects of modifications.” in ICSM, vol. 94. ACM, 1994, pp. 243–
252.

[57] B. Godlin and O. Strichman, “Regression verification,” in Proceedings of
the 46th Annual Design Automation Conference, ser. DAC ’09. ACM,
2009, pp. 466–471.

[58] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo, “Symdiff:
A language-agnostic semantic diff tool for imperative programs,” in
International Conference on Computer Aided Verification. Springer,
2012, pp. 712–717.

[59] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pasareanu, “Differential
symbolic execution,” in Proceedings of the 16th ACM SIGSOFT Inter-
national Symposium on Foundations of software engineering. ACM,
2008, pp. 226–237.

[60] D. A. Ramos and D. R. Engler, “Practical, low-effort equivalence
verification of real code,” in International Conference on Computer
Aided Verification. Springer, 2011, pp. 669–685.

[61] D. Gao, M. K. Reiter, and D. Song, “BinHunt: Automatically finding
semantic differences in binary programs,” in International Conference
on Information and Communications Security. Springer, 2008, pp.
238–255.

[62] J. Ming, M. Pan, and D. Gao, “iBinHunt: Binary hunting with inter-
procedural control flow,” in International Conference on Information
Security and Cryptology. Springer, 2012, pp. 92–109.

[63] S. Chakraborty, K. S. Meel, and M. Y. Vardi, “A scalable approximate
model counter,” in International Conference on Principles and Practice

of Constraint Programming. Springer, 2013, pp. 200–216.

12

